THERMAL TOMOGRAPHY FOR MICROSCALE ENERGY CONVERSION DEVICES

Stéphane CHEVALIER

HDR Defense - April 11th, 2024

Committee Members

Reviewers : Thierry DUVAUT - Professor, Université de Reims Annie Colin Professor, ESPCI -Helcio Orlande - Professor, Federal University of Rio Examinators : Jean-Chritophe BATSALE -Professor, ENSAM Ivan Iordanoff - Professor, ENSAM Cathy CASTELAIN Research Director, CNRS -Farid Bakir Professor, ENSAM -Guest: Jean-Noël TOURVIEILLE PhD, SYENSQO -

H. Hashemi, S. et al. *Energy Environ. Sci.* **2015**, *8* (7), 2003–2009.

Wu, N. et al. *Lab Chip* **2023**, *23* (5), 1034–1065.

 \rightarrow Electrochemical energy conversion devices!

Microscale is good for energy transfers!

Modestino, M. A. et al. *Energy Environ. Sci.* **2016**, *9* (11), 3381–3391.

M. Garcia, PhD Thesis 2024

Energy transfer = heat and mass transfer

4

How to measure heat and mass transfer in MECD?

Opaque systems Field properties

Shrestha P. et al., Electrochimica Acta, **2023** 142810

Diffusivity [m²/s]

Inlet

Ravey, C. et al. *Quant. Infrared Thermogr. J.* **2012**, *9* (1), 79–98.

WHAT ARE OPERANDO HEAT AND MASS TRANSFER PROPERTIES IN MEDC?

Example: two-phase flow in fuel cell gas diffusion layer

Chevalier, S. et al. *Electrochim. Acta* **2016**, *210* (210), 792–803.

 \rightarrow Ex situ properties differ from in situ measurements!

THESE ISSUES HAVE LONG BEEN IMPORTANT COMPONENTS OF MY RESEARCH !

→ Answering these questions have led to 49 journal papers → More than 1000 citations in 10 years ($h_{index} = 22$)

Source : Scopus le 26/03/24

Documents by subject area

 \rightarrow Confluence of Engineering, Chemistry, Energy and Physics (heat transfers, optics, signal processing...)

RESEARCH TASK FORCE

Over the last 10 years:

 \rightarrow 6 PhD students (4 graduated and 2 undergoing)

- \rightarrow 7 Master 2 students
- → 1 M€ of funding

2 CNRS Joint PhD programs

Nouvelle Aquitaine Region Funding

MSCA funding

Carnot Institute ART hydrogen program

MAIN OUTCOMES

How to measure heat and mass transfer in MECD?

What are the operando heat and mass transfer properties in MEDC?

→ Imaging µscale heat transfer in semi-transparent media using thermo-transmittance

➔ A new spectroelectrochemical microsopy for operando electrochemical kinetics measurement in microfludic fuel cells

MAIN OUTCOMES

How to measure heat and mass transfer in MECD?

→ Imaging µscale heat transfer in semi-transparent media using thermo-transmittance

What are the operando heat and mass transfer properties in MEDC?

➔ A new spectroelectrochemical microsopy for operando electrochemical kinetics measurement in microfludic fuel cells

Example : high temperature control required for biological applications

What happen if we use a camera ?

Existing expertise in the group

Pradere, C. et al., *J. Appl. Phys.* **2017**, *121* (8), 085102. Yamashita et al. *Biomed. Phys. Eng. Express* **2018**, *4* (3), 035030. Ryu, M. et al. *Chem. Eng. J.* **2017**, *324*, 259–265.

→ To avoid the background noise, the main idea is to shed IR lights through the sample to measure the transmission

→ A needle in a haystack : on a 14 bits camera it is equivalent to detect a change of 8 camera count of out 16384.

Figures from C. Bourges PhD Thesis

Setup developed in C. Bourges PhD (Collab LOMA)

OK, BUT HOW CAN I MEASURE IT?

Figures from C. Bourges PhD Thesis

Few Results

\rightarrow Validation with heat transfer model in Fourier space

- (1) Bourgès, C. SFT 2023; Reims, Lauréate !
- (2) Bourgès, C. *Rev. Sci. Instrum.* **2023**, *94* (3), 034905.

- (3) Bourgès, C Appl. Phys. Lett. 2024, 124 (1).
- (4) Bourgès, C Int. J. Heat Mass Trans. 2024, Submitted

INTERESTING SIDE EFFECT: A DIRECT WAY TO THERMAL TOMOGRAPHY!

20

INTERESTING SIDE EFFECT: A DIRECT WAY TO THERMAL TOMOGRAPHY!

MAIN OUTCOMES

How to measure heat and mass transfer in MECD?

- Controlling the source is the key to improve the SNR
- Thermotransmittance is a suitable technique to measure heat transfer in semi-transparent media
- ➔Proof of concept for tomographic measurement... but a lot to do remain!

What are the operando heat and mass transfer properties in MEDC?

➔ A new spectroelectrochemical microsopy for operando electrochemical kinetics measurement in microfludic fuel cells

Concentration variations lower to mM

Jayashree et al. J. Power Sources 2010, 195 (11), 3569–3578.

HOW TO MEASURE MMOLE CONCENTRATION FIELDS IN MECD?

 $c = -\mu \log_{10} \frac{\Gamma}{\Gamma_0}$

Spectrometry...

Again !!

Chevalier, S. et al. Chem. Eng. J. Adv. 2021, 8, 100166.

Order of magnitude of the signal:

$$\frac{\Delta\Gamma}{\Gamma_0} \approx \kappa c$$

$$\kappa = 1.5 \times 10^{-2} \text{ mM}^{-1}$$

→To detect $\Delta c \sim 0.1$ mM, a relative transmission variations of less than 0.1% needs to be measured.

→Similar to thermotransmittance... so same solution → control the source !!

Link between current and concentration : Faraday law

$$\frac{dc}{dx}(t) = \frac{I(t)}{zF} \quad \longleftrightarrow \quad \Delta c(t) \propto I(t)$$

→ Controlling the current is the same as controlling a thermal source → we can use it to increase our SNR !

A new combination of electrochemical spectroscopy and visible spectroscopy

(1) Chevalier, S et al. Int. J. Hydrogen Energy **2013**, 38 (26), 11609–11618.

(2) Chevalier, S. et al. *Fuel Cells* **2014**, *14* (3), 416–429. 27

Garcia, M. et al. Electrochim. Acta 2023, 460, 142489.

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

PARAMETRIC ESTIMATION

New data for inverse methods !

$$\underline{\delta c} = \int_{-\infty}^{+\infty} c(t) e^{-\mathrm{i}\omega t} d\omega$$

Mass transport model in Fourier space :

$$i\omega\underline{\delta c} + \nu\overline{\nabla}\underline{\delta c} = D\nabla^2\underline{\delta c} \pm \underline{R}$$

Non linearities from electrochemistry solved:

$$\underline{R} = \frac{\mathbf{i}_0}{zFhc^{ref}} e^{-\eta_c^0/b} \left(\frac{c^0}{b} \underline{\delta\eta_c} + \underline{\delta c}\right)$$

Identification of operando electrochemical kinetics !

$$i_0 = (6.8 \pm 1.9) \times 10^{-3} \,\mu\text{A/mm}^2$$

 $b = 30 \pm 4 \,\text{mV}$

30

Developments of lock-in imaging method for both heat and mass transfers Experimental setup + numerical/ analytical modeling

→ parameters
estimation/inverses methods

Extension of TIFC skills toward thermal tomography and electrochemical systems

Few others main results (X rays, microfluidic electrolyzers...)

RESEARCH PROJECT

How to measure heat and mass transfers in MECD at microscale?

1. Switching from 2D to 3D

2. Current optical limits of IR imaging

Next steps: improving our setup Collab: J. Maire

Roadmap and locks

- ✓ Chopper to be removed
- ✓ Electrical resistance to be removed
- ✓ Volumic heating!
- ✓ 100 mK thermal resolution
- ✓ Measurement time lower than 10 s

High-Power IR Emitters:

Quantum Cascade Lasers:

34

QUANTITATIVE THERMAL TOMOGRAPHY

Next steps: working on the algorithm -> SIRT (Simultaneous Iterative Reconstruction Technique) **J. Letessier (Postdoc)**

→ Challenge : Thermal fields are low frequency, so filters needs to be adapted !

SUPERRESOLUTION IMAGING

Central topic in the research group: Groz, M. et al. *Quant. Infrared Thermogr. J.* **2024**, *O* (0), 1–24. **Still using lasers!**

→ Generating sub-pixel pattern !

Still using Inverse Methods!

$$I_m = h \otimes (\rho \phi_m) + \epsilon$$

h : Point Spread Function \rightarrow low pass filter

→ Challenges: Transient regime, diffusive problem.
 → Low frequency for diffusion, high frequency for structure !

STILL THE SAME QUESTIONS

What are the operando heat and mass transfer properties in MEDC?

➔ Combining spectroelectrochemistry and thermottransmittance in fluid

Nguyen, T.-A.; Exp. Therm. Fluid Sci. 2023, 142

➔ Another great asset of microfluidic : ageing studies

Ageing a 1 kW PEMFC stack over 1,000 h will cost 60 bottles of hydrogen and between 1,500 and 2,500€.

TWO MAIN APPLICATIONS

SmartBat project: collaboration I2M/Tokyo University

The key idea is to combine:

- 1. modulated electrochemical methods (like electrochemical impedance spectroscopy)
- 2. Concentration and thermal imaging methods (like IR or Vis spectroscopy)

Purpose: imaging very low concentration fields (few mM) in microfluidic electrochemical devices (sensors, energy converters, ...) \rightarrow A. Svirina PhD

TWO MAIN APPLICATIONS

OptUseH2 and the Hydrogen platform

The key idea is to combine:

- 1. Systemic modelling of heat and mass transfer
- 2. Microfluidic fuel cells and electrolyzers

Purpose: building an Hydrogen platform to study fuel cell chain durabilities

→ Strong side effect of this project concerning educational aspect

CONCLUSIONS & PERSPECTIVES

PAST WORKS & RESEARCH PROJECT

Development of new characterization methods for MECD

- ✓ Operando parameters estimations
- Better understanting of heat and mass transfers in these systems

Keep decreasing time and space scales in 3D

PERSPECTIVES

Super Resolution

ACKNOWLEGMENTS

