

Water management in the Gas Diffusion Layer of PEM fuel cells: Dynamic breakthrough effects on porous media liquid water saturation Stéphane CHEVALIER*, Christophe JOSSET and Bruno AUVITY Laboratoire de Thermique et Énergie de Nantes (CNRS UMR 6607)

Polytech Nantes – The Graduate School of Engineering of the University of Nantes

* Post-doc fellowship from Marie Curie COFUND (FP7) actions program through grant PRESTIGE-2016-2-0027

Water drainage process of a model capillary system as water emerges from the GDL surface, Lu et al. (2010 Int. J. Hydrogen Energy)

Motivations:

1. From a fundamental perspective:

Gain a better insight into the transition from the capillary fingering to the stable displacement regime in the case of GDL. Particularly relevant for **high current density**

i.e. high flow rates

Drainage phase diagram, Lenormand et al. (1988 J Fluid Mech.)

Methodology:

2. From the application:

How to explain the **change**

for liquid invasion in GDL?

in preferential path

1st **step**: Modelization of a pore network typically encountered in GDL into a 2 interconnected capillary tubes system

The «two-drops» model

Flipo et al. Eruptive water transport in PEMFC: a single drop capillary model, Int. J. Hydrogen Energy, 2015 Hyp: constant water flow, spherical meniscus/drop Poiseuille flow Laplace law

$$\begin{bmatrix} p_i = \frac{8\mu L}{\pi R_i^2} \cdot V_i + \frac{4\gamma\cos\theta}{R_i} + p_0 \\ p_1 = p_2 \\ Q = V_1 + V_2 \end{bmatrix}$$

The inverted Y experiment

Experimental conditions:

Machined channels in teflon block Upper side in PDMS (for visualization) Inlet water flow rate: 50 μ l/min R = 1,07 (hydraulic diameter ratio) $Ca = 1.6 \ 10^{-4}$

 t_0 +40s

At first, only the larger

tube is invaded,

mecanism.

as predicted by the

Invasion-Percolation

But.....

 $t_0 + 1 \min$

 $t_0 + 8 \min$

whole network is invaded. This is **not predicted by the Invasion-Percolation** mecanism.

To the point where the

Conclusion: The **dynamic breakthrough alters the invaded pore networks**. The transition from the capillary to the stable displacement regime depends on Ca, the network geometry and viscous effects.

 t_0 + 6 min