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1. Introduction to polymer electrolyte 
membrane fuel cell 
 
 
 

2. Experimental work: X-ray synchrotron 
radiography of PEMFC in dead-ended anode 
operation  
 
 
 

3. Oxygen effective calculation using pore 
network modeling 
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• A fuel cell is an electrochemical energy conversion device. 

 

• Use Hydrogen and Oxygen to produce electricity 

 

• Water is the only by-product 

 

• Chemical reactions 
– Anode: H2 -> 2H+ + 2e-   

 

– Cathode: ½.O2 + 2H+ + 2e-  -> H2O 

 

– Overall: H2 + ½.O2 -> H2O 
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What is a Polymer Electrolyte Membrane Fuel Cell (PEMFC)? 
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Proton Exchange Membrane Fuel Cell (PEMFC) Components 
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Thicknesses of the layers: between 20 – 200 µm. 
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DoE targets by 2020  for the commercial viability of PEMFC 
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 Figure from 2015 Annual Merit Review and Peer Evaluation Meeting June 8 -12, 2015 

In particular, fuel cell performance and reliability are 
hindered by non-optimal liquid water management 
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Fuel cell water management 
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What is the optimal fuel cell water management?  
 
• Let enough liquid water in the fuel cell to 

hydrate the membrane 
• Remove all the liquid water from the GDL 

How to improve it? 
 
• By obtaining a better understanding of the liquid water transport 
• By optimizing the structure of the GDL 
 

These challenges can be tackled by: 
  visualizing the liquid water in the GDL of an operating fuel cell 
   modeling the liquid water transport in the GDL 
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Fuel cell imaging at the Canadian light source (CLS) 
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Employing high intensity, monochromatic, and collimated X-rays to facilitate 

imaging at with high spatial and temporal resolutions. 

Canadian Light Source Inc. 
• Beamline: BioMedical Imaging & 

Therapy (BMIT)  

• Energy Source: Bending Magnet 

• Energy Range: 15-40 keV 

• Beam Energy Used: 24 keV 

• Pixel resolution: 6.5 µm/pixel 

• Time resolution: 3 s/image 

• Size: 256.4mm x 8.7 mm @ 26m 
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Miniature fuel cell was specifically designed for 
synchrotron X-ray radiography 
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This fuel cell was designed in collaboration with Nissan Motor, Japan 
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Experimental setup 
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Image processing 
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1. Subtract dark image from stack 
(eliminates stationary artifacts in detector) 
 

2. Compensate for intensity decrease over time 
 

3. Correct images micro-movements 
 

4. Apply Beer-Lambert Law 
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Dry image: fuel 
cell without liquid 
water 

Wet image: when 
liquid water has 
accumulated in the cell 

Liquid water 
thickness 

X-ray attenuation 
coefficient of water 
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Results 
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Liquid water in an operating fuel cell 
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In situ analysis of voltage degradation in a polymer 
electrolyte membrane fuel cell with a dead-ended anode 

Dead-ended anode operation = Anode outlet 
closed by a solenoid valve 
 
 
Benefit: it reduces the hydrogen consumption 
and therefore increases the car mileage 
 
Drawback: it decreases the reliability of the 
fuel cell performance 

Figure: M. Kim et al., Effects of anode flooding on the performance 
degradation of polymer electrolyte membrane fuel cells, J. Power 
Sources. 266 (2014) 332–340. 
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Experimental setup 

(a): fuel cell in DEA 
(b): raw radiograph 
(c): liquid water thickness after the post processing 

Objective: visualizing the liquid water while the fuel cell was operating in DEA mode 
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Origin of the unsteady performance 

1. The DEA mode induced unsteady performance. 
 

2. The saturation in the GDL increases until 100% 
in both anode and cathode 
 

3. The oxygen and hydrogen cannot reach the 
catalyst layer which decrease the performance 
 

Fuel cell performance degradations came from both anode and cathode flooding. 
 

This phenomenon was observed for the first time. 



Thermofluids for Energy and 
Advanced Materials Laboratory  

UNIVERSITY OF 

TORONTO 

Thermofluids for Energy and 
Advanced Materials Laboratory  

16 

Impact of the anode purge 

1. The purge of anode impacts both anode and 
cathode liquid water contents 
 

2. Anode and Cathode liquid water increase and 
decrease accordingly. 

Our visualizations revealed a strong coupling between the 
cathode and the anode liquid water 

S. Chevalier et al., In situ analysis of voltage degradation in a polymer electrolyte membrane 
fuel cell with a dead-ended anode, Electrochem. Commun. 59 (2015) 16–19 
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Pore Network Modelling 
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Pore network modelling versus continuum modelling 

• PNMs track water fronts and two-phase interfaces by modeling each pore 
as a junction, and each throat as a resistor 

• Combining Multiphase  flow with transport is as easy as removing resistors 
from the network. 

• Despite being ‘pore-scale’ this approach loses the details within a pore, like 
streamlines, mixing effects, velocity profiles 

• PNMs cannot model transport processes with accuracy comparable to approaches 
like finite-element analysis 



Thermofluids for Energy and 
Advanced Materials Laboratory  

UNIVERSITY OF 

TORONTO 

Thermofluids for Energy and 
Advanced Materials Laboratory  

Stéphane Chevalier 
schevali@mie.utoronto.ca 

20 

OpenPNM: http://openpnm.org/ 

• Work any network lattice, random, 2D/3D 
• Fully Flexible to any scientific pursuit (not just Fuel Cells) 
• Accessible for non-computer scientists 
• Professional, well Documented 
• Free using Python 
 

Main partners involve in OpenPNM framework: 
• Mc Guill University (J. Gostick, Montreal) 
• University of Toronto 
• University of Leeds (UK) 
• University of Julich (Germany) 
• American Fuel Cell Consortium 
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OpenPNM 
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3D invasion percolation 
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Oxygen diffusivity calculation by PNM 

1. Characterization of the GDL 3D structure by microcomputed 
tomography 
 

2. Segmentation (binarisation) of the images 
 

3. Extraction of the equivalent pore network based on the 
segmented images 
 

4. Pore network modeling of the diffusive gas transport (Fick’s law) 
 

5. Calculation of the effective diffusivity 
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Micro-compute tomography 

• X-rays micro tomography 

• Down to 0.7 µm detail detectability. 

• Achievable spatial resolution of 5 µm. 

Gasket 

GDL Sample 
(Carbon paper + 
MPL) Compression 

plate 

3D Characterization of Compressed GDL (25%) 
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Image segmentation 
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Extraction of the equivalent pore network 

In house C++ code extracts the pores 

• Volume, surface, hydraulic 
diameter, positions 
 
 

• Diameter, length, connectivity 

And the throat 
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Effective diffusivity characterization via OpenPNM 

Inlets 

           
 Fick’s law: 
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Effective diffusivity characterization via OpenPNM 

Calculation of the effective diffusivity was validated on experimental data 
 
 This methodology is an alternative to the experimental measurement 

R. Rashapov et al., A method for measuring 
in-plane effective diffusivity in thin porous 
media, Int. J. Heat Mass Transf. 85 (2015) 
367–374. 
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Summary of the experimental approache 
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1. The liquid water was measured in an 
operating fuel cell using X-ray synchrotron 
radiography  
 
 

2. For the first time, the liquid water in both 
anode and cathode GDL was visualised in an 
operating PEMFC in DEA 
 
 

3. Fuel cell voltage degradations were linked to 
both anode and cathode GDL flooding, and 
strong correlations between anode and 
cathode liquid water content were observed 
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Summary of the pore network modelling 

1. New Open source pore network modelling 
package is available 
 
 
 

2. Pore network modelling based on micro-
computed tomography is an accurate tool 
• Porous media characterization 
• Simulation of mass transport 

 
3. Various aspects of the porous media can be 

studied 
• Transport Properties characterisation 
• Impact of the operating condition (compression rate) 
• Multiphase transport 

http://openpnm.org/  Version 1.0 released 4 months ago 
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Thank You. 
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