Characterization of the transport properties of gas diffusion layers in polymer electrolyte membrane fuel cells

S. Chevalier

¹ Dept. of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario, Canada

Ulm

August 26th, 2015

Outlines

1. Introduction to polymer electrolyte membrane fuel cell

Experimental work: X-ray synchrotron radiography of PEMFC in dead-ended anode operation

3. Oxygen effective calculation using pore network modeling

What is a Polymer Electrolyte Membrane Fuel Cell (PEMFC)?

- A fuel cell is an electrochemical energy conversion device.
- Use Hydrogen and Oxygen to produce electricity
- Water is the only by-product
- Chemical reactions
 - Anode: $H_2 \rightarrow 2H^+ + 2e^-$
 - Cathode: $\frac{1}{2}.O_2 + 2H^+ + 2e^- -> H_2O$
 - Overall: $H_2 + \frac{1}{2} \cdot O_2 -> H_2O$

PEMFC Schematic

Proton Exchange Membrane Fuel Cell (PEMFC) Components

Thicknesses of the layers: between $20 - 200 \mu m$.

DoE targets by 2020 for the commercial viability of PEMFC

In particular, fuel cell performance and reliability are hindered by non-optimal liquid water management

Figure from 2015 Annual Merit Review and Peer Evaluation Meeting June 8 -12, 2015

Fuel cell water management

What is the optimal fuel cell water management?

- Let enough liquid water in the fuel cell to hydrate the membrane
- Remove all the liquid water from the GDL

How to improve it?

- By obtaining a better understanding of the liquid water transport
- By optimizing the structure of the GDL

These challenges can be tackled by:

- visualizing the liquid water in the GDL of an operating fuel cell
- modeling the liquid water transport in the GDL

Outlines

1. Introduction to polymer electrolyte membrane fuel cell

2. Experimental work: X-ray synchrotron radiography of PEMFC in dead-ended anode operation

3. Oxygen effective calculation using pore network modeling

Fuel cell imaging at the Canadian light source (CLS)

Employing high intensity, monochromatic, and collimated X-rays to facilitate imaging at with high spatial and temporal resolutions.

Miniature fuel cell was specifically designed for synchrotron X-ray radiography

This fuel cell was designed in collaboration with Nissan Motor, Japan

Experimental setup

Image processing

- Subtract dark image from stack (eliminates stationary artifacts in detector)
- 2. Compensate for intensity decrease over time
- 3. Correct images micro-movements
- 4. Apply Beer-Lambert Law

Liquid water thickness $X_{w} = \frac{1}{\mu_{w}} \ln \frac{I_{w}}{I_{w}}$

X-ray attenuation coefficient of water

Dry image: fuel cell without liquid water

Wet image: when liquid water has accumulated in the cell

Results

Liquid water in an operating fuel cell

In situ analysis of voltage degradation in a polymer electrolyte membrane fuel cell with a dead-ended anode

Dead-ended anode operation = Anode outlet closed by a solenoid valve

<u>Benefit:</u> it reduces the hydrogen consumption and therefore increases the car mileage

<u>Drawback:</u> it decreases the reliability of the fuel cell performance

Figure: M. Kim et al., Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells, J. Power Sources. 266 (2014) 332–340.

Experimental setup

Objective: visualizing the liquid water while the fuel cell was operating in DEA mode

(a): fuel cell in DEA

(b): raw radiograph

(c): liquid water thickness after the post processing

Origin of the unsteady performance

Fuel cell performance degradations came from both anode and cathode flooding.

This phenomenon was observed for the first time.

Impact of the anode purge

- The purge of anode impacts both anode and
- Anode and Cathode liquid water increase and decrease accordingly.

Our visualizations revealed a strong coupling between the cathode and the anode liquid water

S. Chevalier et al., In situ analysis of voltage degradation in a polymer electrolyte membrane fuel cell with a dead-ended anode, Electrochem. Commun. 59 (2015) 16-19

Current

Collector

Catalyst Membrane Catalyst

Current

Collector

450

Outlines

1. Introduction to polymer electrolyte membrane fuel cell

2. Experimental work: X-ray synchrotron radiography of PEMFC in dead-ended anode operation

3. Oxygen effective calculation using pore network modeling

Pore Network Modelling

Figures from J. Gostik

Pore network modelling versus continuum modelling

- PNMs track water fronts and two-phase interfaces by modeling each pore as a junction, and each throat as a resistor
- Combining Multiphase flow with transport is as easy as removing resistors from the network.
- Despite being 'pore-scale' this approach loses the details within a pore, like streamlines, mixing effects, velocity profiles
- PNMs cannot model transport processes with accuracy comparable to approaches like finite-element analysis

OpenPNM: http://openpnm.org/

- Work any network lattice, random, 2D/3D
- Fully Flexible to any scientific pursuit (not just Fuel Cells)
- Accessible for non-computer scientists
- Professional, well Documented
- Free using Python

Main partners involve in OpenPNM framework:

- Mc Guill University (J. Gostick, Montreal)
- University of Toronto
- University of Leeds (UK)

Thermofluids for Energy and

Advanced Materials Laboratory

- University of Julich (Germany)
- American Fuel Cell Consortium

20

OpenPNM

3D invasion percolation

Oxygen diffusivity calculation by PNM

- 1. Characterization of the GDL 3D structure by microcomputed tomography
- 2. Segmentation (binarisation) of the images
- 3. Extraction of the equivalent pore network based on the segmented images
- 4. Pore network modeling of the diffusive gas transport (Fick's law)
- 5. Calculation of the effective diffusivity

Micro-compute tomography

3D Characterization of Compressed GDL (25%)

- X-rays micro tomography
- Down to 0.7 μm detail detectability.
- Achievable spatial resolution of 5 μm.

Image segmentation

Greyscale value

Ternary image

Black: void Grey: fibers

Light grey: MPL

GDL porosity distribution

GDL 3D geometry

Extraction of the equivalent pore network

In house C++ code extracts the pores

Volume, surface, hydraulic diameter, positions

And the throat

Diameter, length, connectivity

Effective diffusivity characterization via OpenPNM

Fick's law:

Conductance at the pore scale:

Effective diffusivity characterization via OpenPNM

R. Rashapov et al., A method for measuring in-plane effective diffusivity in thin porous media, Int. J. Heat Mass Transf. 85 (2015) 367–374.

Calculation of the effective diffusivity was validated on experimental data

→ This methodology is an alternative to the experimental measurement

Summary of the experimental approache

The liquid water was measured in an operating fuel cell using X-ray synchrotron radiography

Summary of the pore network modelling

1. New Open source pore network modelling package is available

http://openpnm.org/ Version 1.0 released 4 months ago

- 2. Pore network modelling based on microcomputed tomography is an accurate tool
 - Porous media characterization
 - Simulation of mass transport
- 3. Various aspects of the porous media can be studied
 - Transport Properties characterisation
 - Impact of the operating condition (compression rate)
 - Multiphase transport

Thank You.

Contact Info:

Chevalier Stéphane
Dept. of Mechanical & Industrial Engineering
University of Toronto

Email: schevali@mie.utoronto.ca

Websites: http://bazylak.mie.utoronto.ca/

http://www.chevalierstephane.fr/

Phone: 416-946-5031