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Key role playing by the GDL: 

• Diffuse the reactant up to the 

catalyst layer 

• Electrical and thermal conductor 

• Remove the water excess 
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The Gas Diffusion Layer 

Composed of two porous materials: 
• Carbon fibers, mean pore size 
  

 µm 
• MPL  mean pore size 
   

 nm 

50 µm 
Pore Bodies 

Throat 
Constrictions What is the optimal design? 

   Porosity distribution 
   The mean size pore 
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Pore network 
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Figures from J. Gostik 
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Pore network modelling versus continuum modelling 

• PNMs track water fronts and two-phase interfaces by modeling each pore as a junction, and 
each throat as a resistor 

• Combining Multiphase  flow with transport is as easy as removing resistors from the network. 

• Despite being ‘pore-scale’ this approach loses the details within a pore, like streamlines, mixing effects, 
velocity profiles 

• PNMs cannot model transport processes with accuracy comparable to fancy approaches like finite-element 
analysis 
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Water invasion of a stochastic porous media 
Figure from Sinha et al.,  Electrochemica Acta, 2007 
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Invasion percolation 

Diagram de Voronoi Creation of pores Weighting of the throats  
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Invasion percolation 

Wilkinson et al., 1983 
Chapuis et al., 2008 
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Invasion percolation 
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Results from 2D stochastic networks 

Study of the correlation between the local 
porosity distribution of the saturation 

- 100 simulations (600 x 200 µm) - 
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Solving Laplace equation 

         
 Transport Modelling: 
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Characterisation of the effectives properties 
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PNM Summary  

PNM advantages: 
• Very fast resolution compare to continuum models  high 

numbers of stochastic geometry can be studied 
• Can handle large geometry with small pores 

 
Issues: 
• Build the equivalent network 

 All this concept are embedded in the free software OpenPNM 
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OpenPNM 

Integration of all the PNM concepts in one open source software: 
• 3D geometry 
• Structured and unstructured network 
• Multiphysics: invasion percolation and transport equations 
• Python library 

 
 

Main partners involve in OpenPNM framework: 
• Mc Guill University (J. Gostick, Monteral) 
• University of Toronto 
• University of Leeds (UK) 
• University of Julich (Germany) 
• American Fuel Cell Consortium 
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OpenPNM 
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3D invasion percolation 
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Characterisation of GDL oxygen effective diffusivity 

Ex-situ GDL characterization in four steps: 
1. 3D scans of compressed GDL 
2. Segmentation  
3. Extraction of the equivalent network 
4. Modeling of the gas transport 

                

 

Fuel cell performance and oxygen 
diffusivity: 

(At one given voltage) 
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Micro-compute tomography 

• System: Skyscan 1172. 

• 11 mega-pixels X-Ray camera. 

• Up to 8000 pixels x 8000 pixels in every slice. 

• Down to 0.7 µm detail detectability. 

• Achievable spatial resolution of 5 µm. 

Gasket 

GDL Sample 
(Carbon 
paper + MPL) 

Compression 
plate 

Series of in-plane 
GDL slices  

Compressed GDL (25%) 
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Grayscale image segmentation 
1. Void (black) 
2. Fibers (bright) 
3. MPL (light gray) 

Thresholding of 3 phases: 



Thermofluids for Energy and 
Advanced Materials Laboratory  

UNIVERSITY OF 

TORONTO 

Thermofluids for Energy and 
Advanced Materials Laboratory  

Stéphane Chevalier 
schevali@mie.utoronto.ca 

19 

Through plan porosity distribution 
                   

 From the segmented images, the porosity of each slices is computed as: 
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Extraction of the equivalent pore network 

In house C++ code extracts the pores 

• Pore volume 
• Pore surface 
• Pore hydraulic diameter 
• Throat diameters 
• Throat length (based on the 

adjacent fiber diameters) 
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Effective diffusivity characterization via OpenPNM 

Toray 060, 5% PTFE: 
 
 
 
  

Inlets 

         

 

In-situ experimental measures by Baker et al., 2009 

Results 
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Coupling Pore Network and In-situ visualization technic 

Characterization of the GDL oxygen diffusivity at liquid water  
different saturation 

      

 

• X-rays imaging 
• Impedance spectroscopy 
• PNM 
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Summary 

 Porous material can be view as resistor 
network 
 

 Multiphasic modeling in fingering regime 
can be achieved via Invasion Percolation 
algorithm on pore network handle 
realistic result 
 

 OpenPNM is opensource package for 3D 
multiphasic modelling and porous 
material characterization 
 

 Ex-situ characterization of oxygen 
diffusivity compressed GDL  
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Thank You. 
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